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9.3  Counting Elements of Disjoint Sets: Addition Rule

In this lecture:

q Part 1: Addition Rule 

qPart 2: Difference Rule

qPart 2: Inclusion Rule
To count elements of union and disjoint sets

Counting
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The number of elements in a union of mutually disjoint finite 
sets equals the sum of the number of elements in each of the 
component sets.

Additional Rule

540 Chapter 9 Counting and Probability

9.3 Counting Elements of Disjoint Sets:
The Addition Rule
The whole of science is nothing more than a refinement of everyday thinking.
— Albert Einstein, 1879–1955

In the last section we discussed counting problems that can be solved using possibility
trees. In this section we look at counting problems that can be solved by counting the
number of elements in the union of two sets, the difference of two sets, or the intersection
of two sets.

The basic rule underlying the calculation of the number of elements in a union or
difference or intersection is the addition rule. This rule states that the number of elements
in a union of mutually disjoint finite sets equals the sum of the number of elements in
each of the component sets.

Theorem 9.3.1 The Addition Rule

Suppose a finite set A equals the union of k distinct mutually disjoint subsets A1,
A2, . . . , Ak . Then

N (A) = N (A1) + N (A2) + · · · + N (Ak).

A formal proof of this theorem uses mathematical induction and is left to the
exercises.

Example 9.3.1 Counting Passwords with Three or Fewer Letters

A computer access password consists of from one to three letters chosen from the 26 in
the alphabet with repetitions allowed. How many different passwords are possible?

Solution The set of all passwords can be partitioned into subsets consisting of those of
length 1, those of length 2, and those of length 3 as shown in Figure 9.3.1.

Set of All Passwords of Length ≤ 3

passwords
of length 1

passwords
of length 2

passwords
of length 3

Figure 9.3.1

By the addition rule, the total number of passwords equals the number of passwords of
length 1, plus the number of passwords of length 2, plus the number of passwords of
length 3. Now the

number of passwords of length 1 = 26 because there are 26 letters in the alphabet

number of passwords of length 2 = 262 because forming such a word can be
thought of as a two-step process in which
there are 26 ways to perform each step

number of passwords of length 3 = 263 because forming such a word can be thought
of as a three-step process in which
there are 26 ways to perform each step.

Hence the total number of passwords = 26 + 262 + 263 = 18,278. ■
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A password consists of from 1, 2, or 3 letters chosen from 
{a..z} with repetitions allowed. How many different passwords 
are possible?

Number of passwords of length 1 = 26 (because there are 26 letters in the alphabet)

Number of passwords of length 2 = 262 (two-step process in which there are 26 
ways to perform each step)

Number of passwords of length 3 = 263

Total = 26 + 262 + 263 = 18,278.

Exercise 

Passwords 
Of length 1

Passwords 
Of length 2

Passwords 
Of length 3

6,

How many three-digit integers (integers from 100 to 
999 inclusive) are divisible by 5?

Exercise 

9.3 Counting Elements of Disjoint Sets: The Addition Rule 541

Example 9.3.2 Counting the Number of Integers Divisible by 5

How many three-digit integers (integers from 100 to 999 inclusive) are divisible by 5?

Solution One solution to this problem was discussed in Example 9.1.4. Another approach
uses the addition rule. Integers that are divisible by 5 end either in 5 or in 0. Thus the
set of all three-digit integers that are divisible by 5 can be split into two mutually disjoint
subsets A1 and A2 as shown in Figure 9.3.2.

Three-Digit Integers That Are Divisible by 5

three-digit integers
that end in 0

three-digit integers
that end in 5

A1 A2

A1 ∪ A2 = the set of all three-digit integers
that are divisible by 5

A1 ∩ A2 = ∅

Figure 9.3.2

Now there are as many three-digit integers that end in 0 as there are possible choices
for the left-most and middle digits (because the right-most digit must be a 0). As illus-
trated below, there are nine choices for the left-most digit (the digits 1 through 9) and ten
choices for the middle digit (the digits 0 through 9). Hence N (A1) = 9 ·10 = 90.

↑ ↑ ↑
9 choices 10 choices number ends in 0

1, 2, 3, 4, 5, 6, 7, 8, 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Similar reasoning (using 5 instead of 0) shows that N (A2) = 90 also. So
⎡

⎣
the number of
three-digit integers
that are divisible by 5

⎤

⎦ = N (A1) + N (A2) = 90 + 90 = 180. ■

The Difference Rule
An important consequence of the addition rule is the fact that if the number of elements
in a set A and the number in a subset B of A are both known, then the number of elements
that are in A and not in B can be computed.

Theorem 9.3.2 The Difference Rule

If A is a finite set and B is a subset of A, then

N (A − B) = N (A) − N (B).
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3-digits integers 
That ends in 0

3-digits integers 
That ends in 5

Three-Digit Integers That Are Divisible by 5

A1 A2

The number of 
3-digit integers that 
are divisible by 5

= N(A1) + N(A2) = 90 + 90 = 180



11/25/18

4

7,

In this lecture:

q Part 1: Addition Rule 

qPart 2: Difference Rule

qPart 2: Inclusion Rule
Apply these rules to count elements of union and disjoint sets
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Now there are as many three-digit integers that end in 0 as there are possible choices
for the left-most and middle digits (because the right-most digit must be a 0). As illus-
trated below, there are nine choices for the left-most digit (the digits 1 through 9) and ten
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1, 2, 3, 4, 5, 6, 7, 8, 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Similar reasoning (using 5 instead of 0) shows that N (A2) = 90 also. So
⎡

⎣
the number of
three-digit integers
that are divisible by 5

⎤
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The Difference Rule
An important consequence of the addition rule is the fact that if the number of elements
in a set A and the number in a subset B of A are both known, then the number of elements
that are in A and not in B can be computed.

Theorem 9.3.2 The Difference Rule

If A is a finite set and B is a subset of A, then
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Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Number of students without girls = 
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The PIN codes are made from exactly four symbols chosen from 
the 26 letters and the 10 digits, with repetitions allowed.
Ø How many PINs contain repeated symbols?

1,679,616 − 1,413,720 = 265,896

Exercise 

10,
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The difference rule is illustrated in Figure 9.3.3.

A (n elements)

B (k elements) A – B (n –  k elements)

Figure 9.3.3 The Difference Rule

The difference rule holds for the following reason: If B is a subset of A, then the two
sets B and A − B have no elements in common and B ∪ (A − B) = A. Hence, by the
addition rule,

N (B) + N (A − B) = N (A).

Subtracting N (B) from both sides gives the equation
N (A − B) = N (A)− N (B).

Example 9.3.3 Counting PINs with Repeated Symbols

The PINs discussed in Examples 9.2.2 and 9.2.4 are made from exactly four symbols
chosen from the 26 letters of the alphabet and the ten digits, with repetitions allowed.

a. How many PINs contain repeated symbols?

b. If all PINs are equally likely, what is the probability that a randomly chosen PIN
contains a repeated symbol?

Solution

a. According to Example 9.2.2, there are 364 = 1,679,616 PINs when repetition is allowed,
and by Example 9.2.4, there are 1,413,720 PINs when repetition is not allowed. Thus,
by the difference rule, there are

1,679,616− 1,413,720 = 265,896

PINs that contain at least one repeated symbol.

b. By Example 9.2.2 there are 1,679,616 PINs in all, and by part (a) 265,896 of these
contain at least one repeated symbol. Thus, by the equally likely probability formula,
the probability that a randomly chosen PIN contains a repeated symbol is 265,896

1,679,616
∼=

0.158 = 15.8%. ■

An alternative solution to Example 9.3.3(b) is based on the observation that if S is the
set of all PINs and A is the set of all PINs with no repeated symbol, then S− A is the set
of all PINs with at least one repeated symbol. It follows that

P(S− A) = N (S− A)

N (S)
by definition of probability in the equally likely case

= N (S)− N (A)

N (S)
by the difference rule

= N (S)

N (S)
− N (A)

N (S)
by the laws of fractions

= 1− P(A) by definition of probability in the equally likely case

∼= 1− 0.842 by Example 9.2.4

∼= 0.158 = 15.8%
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The PIN codes are made from exactly four symbols chosen from 
the 26 letters and the 10 digits, with repetitions allowed.
Ø If all PINs are equally likely, what is the probability that a 

randomly chosen PIN contains a repeated symbol?

Exercise 

One way

Another
way
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Ø Until now, we learned to count union of sets that they are disjoint.

Ø Now, we learn how to count elements in a union of sets when 
some of the sets overlap (i.e., they are not disjoint)

The Inclusion/Exclusion Rule

A B
A ∩ B

A ∪ B

14,

Ø How many integers from 1 through 1,000 are multiples 
of 3 or multiples of 5?

Exercise 

N (A B) = N(A) + N(B) – N(A∩B)
=  333   + 200   – 66            = 467

9.3 Counting Elements of Disjoint Sets: The Addition Rule 547

Because every third integer from 3 through 999 is a multiple of 3, each can be rep-
resented in the form 3k, for some integer k from 1 through 333. Hence there are 333
multiples of 3 from 1 through 1,000, and so N (A) = 333.

1 2 3 4 5 6 . . . 996 997 998 999
↕ ↕ ↕ ↕

3 ·1 3 ·2 3 ·332 3 ·333

Similarly, each multiple of 5 from 1 through 1,000 has the form 5k, for some integer
k from 1 through 200.

1 2 3 4 5 6 7 8 9 10 . . . 995 996 997 998 999 1,000
↕ ↕ ↕ ↕

5 ·1 5 ·2 5 ·199 5 ·200

Thus there are 200 multiples of 5 from 1 through 1,000 and N (B) = 200.
Finally, each multiple of 15 from 1 through 1,000 has the form 15k, for some integer
k from 1 through 66 (since 990 = 66 ·15).

1 2 . . . 15 . . . 30 . . . 975 . . . 990 . . . 999 1,000
↕ ↕ ↕ ↕

15 ·1 15 ·2 15 ·65 15 ·66

Hence there are 66 multiples of 15 from 1 through 1,000, and N (A ∩ B) = 66.
It follows by the inclusion/exclusion rule that

N (A ∪ B) = N (A) + N (B) − N (A ∩ B)

= 333 + 200 − 66

= 467.

Thus, 467 integers from 1 through 1,000 are multiples of 3 or multiples of 5.

b. There are 1,000 integers from 1 through 1,000, and by part (a), 467 of these are multi-
ples of 3 or multiples of 5. Thus, by the set difference rule, there are 1,000 − 467 = 533
that are neither multiples of 3 nor multiples of 5. ■

Note that the solution to part (b) of Example 9.3.6 hid a use of De Morgan’s law. The
number of elements that are neither in A nor in B is N (Ac ∩ Bc), and by De Morgan’s
law, Ac ∩ Bc = (A ∪ B)c. So N ((A ∪ B)c) was then calculated using the set difference
rule: N ((A ∪ B)c) = N (U ) − N (A ∪ B), where the universe U was the set of all integers
from 1 through 1,000. Exercises 37–39 at the end of this section explore this technique
further.

Example 9.3.7 Counting the Number of Elements in an Intersection

A professor in a discrete mathematics class passes out a form asking students to check
all the mathematics and computer science courses they have recently taken. The finding
is that out of a total of 50 students in the class,

30 took precalculus; 16 took both precalculus and Java;
18 took calculus; 8 took both calculus and Java;
26 took Java; 47 took at least one of the three courses.
9 took both precalculus and calculus;
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15,

Ø How many integers from 1 through 1,000 are neither 
multiples of 3 nor multiples of 5?

Exercise 

1,000 − 467 = 533

16,

546 Chapter 9 Counting and Probability

First observe that the number of elements in A ∪ B varies according to the number
of elements the two sets have in common. If A and B have no elements in common, then
N (A ∪ B) = N (A) + N (B). If A and B coincide, then N (A ∪ B) = N (A). Thus any
general formula for N (A ∪ B) must contain a reference to the number of elements the
two sets have in common, N (A ∩ B), as well as to N (A) and N (B).

The simplest way to derive a formula for N (A ∪ B) is to reason as follows: The
number N (A) counts the elements that are in A and not in B and also the elements that
are in both A and B. Similarly, the number N (B) counts the elements that are in B and
not in A and also the elements that are in both A and B. Hence when the two numbers
N (A) and N (B) are added, the elements that are in both A and B are counted twice. To
get an accurate count of the elements in A ∪ B, it is necessary to subtract the number of
elements that are in both A and B. Because these are the elements in A ∩ B,

N (A ∪ B) = N (A) + N (B) − N (A ∩ B).Note An alternative
proof is outlined in
exercise 46 at the end of
this section.

A similar analysis gives a formula for the number of elements in a union of three sets,
as shown in Theorem 9.3.3.

Theorem 9.3.3 The Inclusion/Exclusion Rule for Two or Three Sets

If A, B, and C are any finite sets, then

N (A ∪ B) = N (A) + N (B) − N (A ∩ B)

and

N (A ∪ B ∪ C) = N (A) + N (B) + N (C) − N (A ∩ B) − N (A ∩ C)

−N (B ∩ C) + N (A ∩ B ∩ C).

It can be shown using mathematical induction (see exercise 48 at the end of this
section) that formulas analogous to those of Theorem 9.3.3 hold for unions of any finite
number of sets.

Example 9.3.6 Counting Elements of a General Union

a. How many integers from 1 through 1,000 are multiples of 3 or multiples of 5?

b. How many integers from 1 through 1,000 are neither multiples of 3 nor multiples of 5?

Solution

a. Let A = the set of all integers from 1 through 1,000 that are multiples of 3.
Let B = the set of all integers from 1 through 1,000 that are multiples of 5.

Then

A ∪ B = the set of all integers from 1 through 1,000 that are multiples of 3
or multiples of 5

and

A ∩ B = the set of all integers from 1 through 1,000 that are multiples
of both 3 and 5

= the set of all integers from 1 through 1,000 that are multiples of 15.

[Now calculate N (A), N (B), and N (A ∩ B) and use the inclusion/exclusion rule to solve
for N (A ∪ B).]
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section) that formulas analogous to those of Theorem 9.3.3 hold for unions of any finite
number of sets.

Example 9.3.6 Counting Elements of a General Union

a. How many integers from 1 through 1,000 are multiples of 3 or multiples of 5?

b. How many integers from 1 through 1,000 are neither multiples of 3 nor multiples of 5?
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a. Let A = the set of all integers from 1 through 1,000 that are multiples of 3.
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Then

A ∪ B = the set of all integers from 1 through 1,000 that are multiples of 3
or multiples of 5

and
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of both 3 and 5

= the set of all integers from 1 through 1,000 that are multiples of 15.

[Now calculate N (A), N (B), and N (A ∩ B) and use the inclusion/exclusion rule to solve
for N (A ∪ B).]
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17,

Ø How many students did not take any of the three courses?

50−47 = 3.

Exercise 

30 took precalculus;
18 took calculus;
26 took Java;
9 took precalculus & calculus;

Given 50 students:
16 took precalculus & Java;
8 took calculus & Java;
47 took at least 1of the 3 courses.

18,

Ø How many students took all three courses? 

Exercise 

548 Chapter 9 Counting and Probability

Note that when we write “30 students took precalculus,” we mean that the total num-
ber of students who took precalculus is 30, and we allow for the possibility that some of
these students may have taken one or both of the other courses. If we want to say that
30 students took precalculus only (and not either of the other courses), we will say so
explicitly.

a. How many students did not take any of the three courses?

b. How many students took all three courses?

c. How many students took precalculus and calculus but not Java? How many students
took precalculus but neither calculus nor Java?

Solution

a. By the difference rule, the number of students who did not take any of the three courses
equals the number in the class minus the number who took at least one course. Thus
the number of students who did not take any of the three courses is

50− 47 = 3.

b. Let

P = the set of students who took precalculus

C = the set of students who took calculus

J = the set of students who took Java.

Then, by the inclusion/exclusion rule,

N (P ∪ C ∪ J ) = N (P) + N (C) + N (J )− N (P ∩ C)− N (P ∩ J )

− N (C ∩ J ) + N (P ∩ C ∩ J )

Substituting known values, we get

47 = 30 + 26 + 18 − 9− 16− 8 + N (P ∩ C ∩ J ).

Solving for N (P ∩ C ∩ J ) gives

N (P ∩ C ∩ J ) = 6.

Hence there are six students who took all three courses. In general, if you know any
seven of the eight terms in the inclusion/exclusion formula for three sets, you can solve
for the eighth term.

c. To answer the questions of part (c), look at the diagram in Figure 9.3.6.
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47 = 30  +  26   +18    − 9           −16           −8   +   N(P ∩C ∩ J).

N(P ∩ C ∩ J) = 6.

30 took precalculus;
18 took calculus;
26 took Java;
9 took precalculus & calculus;

Given 50 students:
16 took precalculus & Java;
8 took calculus & Java;
47 took at least 1of the 3 courses.
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19,

Ø How many students took precalculus and calculus but not Java? 

Exercise 

30 took precalculus;
18 took calculus;
26 took Java;
9 took precalculus & calculus;

Given 50 students:
16 took precalculus & Java;
8 took calculus & Java;
47 took at least 1of the 3 courses.

= ( N(P∩C) )  – (N(P∩C∩J) =?
9   – 6 =   3 30

18

26
J

C

P

20,

Ø How many students took precalculus but neither calculus nor Java? 

Exercise 

30 took precalculus;
18 took calculus;
26 took Java;
9 took precalculus & calculus;

Given 50 students:
16 took precalculus & Java;
8 took calculus & Java;
47 took at least 1of the 3 courses.

N(P) – (N(P∩C)) – N(P∩J)) + N(P∩C∩J) =?
30  – 9          – 16 +   6 =   11

30

18

26
J

C

P


